Machine Learning/Data Science

DurationDuration:30 hours

Batch TypeBatch Type:Weekend and Weekdays

LanguagesLanguages:English, Hindi

Class TypeClass Type:Online

Class Type Course Fee:

₹15,000.00Full Course

Course Content

Data Science Syllabus

1.) Python for Data Science

 2.) Introduction to Statistics 

Ø Types of Statistics

Ø Analytics Methodology and ProblemSolving Framework

Ø Populations and samples

Ø Parameter and Statistics

Ø Uses of variable: Dependent and Independent variable

Ø Types of Variable: Continuous and categorical variable

 

3.) Descriptive Statistics

4.) Probability Theory and Distributions

5.) Picturing your Data 

Ø Histogram

Ø Normal Distribution

Ø Skewness, Kurtosis

Ø Outlier detection

6.) Inferential Statistics 

7.) Hypothesis Testing 

8.) Analysis of variance (ANOVA) 

Ø Two sample t-Test

Ø F-test

Ø One-way ANOVA

Ø ANOVA hypothesis

Ø ANOVA Model

Ø Two-way ANOVA

 

9.) Regression

Ø Exploratory data analysis

Ø Hypothesis testing for correlation

Ø Outliers, Types of Relationship,scatter plot

Ø Missing Value Imputation

Ø Simple Linear Regression Model

Ø Multiple Regression

Ø Model Building and Evaluation

 

10.)  Model post fitting for Inference 

Ø Examining Residuals

Ø Regression Assumptions

Ø Identifying Influential Observations

Ø Detecting Collinearity

 

11.)  Categorical Data Analysis

Ø Describing categorical Data

Ø One-way frequency tables

Ø Association

Ø Cross Tabulation Tables

Ø Test of Association

Ø Logistic Regression

Ø Model Building

Ø Multiple Logistic Regression and Interpretation

 

12.)  Model Building and scoring for Prediction

Ø Introduction to predictive modeling

Ø Building predictive model

Ø Scoring Predictive Model

Ø Introduction to Machine Learning and Analytics

 

13.)  Introduction to Machine Learning

Ø What is Machine Learning?

Ø Fundamental of Machine Learning

Ø Key Concepts and an example of ML

Ø Supervised Learning

Ø Unsupervised Learning

 

14.)  Linear Regression with one variable

Ø Model Representation

Ø Cost Function

Ø Parameter Learning

Ø Gradient Descent

 

15.)  Linear Regression with Multiple Variable

Ø Computing parameter analytically

Ø Ridge, Lasso, Polynomial Regression

 

16.)  Logistic Regression

Ø Classification

Ø Hypothesis Testing

Ø Decision Boundary

Ø Cost Function and Optimization

 

17.)  Multiclass Classification

18.)  Regularization

Ø Overfitting, Under fitting

 

19.)  Model Evaluation and Selection

Ø Confusion Matrix

Ø Precision-recall and ROC curve

Ø Regression Evaluation

 

20.)  Support Vector Machine

21.)  Decision Tree, Random Forest

22.)  Unsupervised Learning 

Ø Clustering

Ø K-mean Algorithm

 

23.)  Dimensionality Reduction

Ø Principal Component Analysis and applications

 

24.)  Introduction to Neural Network

 

Skills

Advanced Machine Learning, Machine Learning, Data Science, Python for Data Science

Tutor

Sanjeev Kumar Prajapati Profile Pic
Sanjeev Kumar Prajapati

My name is Sanjeev Kumar Prajapati, and I am from Rudrapur, Uttarakhand. I hold a degree in Computer Science with a specialization in Arti...

0.0 Average Ratings

0 Reviews

3 Years Experience

Vivek Nagar Rudrapur Udham Singh Nagar Uttarakhand(263153)

Students Rating

0.0

Course Rating

Blogs

Explore All