Generative AI & Data Science with Python โ LLM & Analytics by Ravi Rakesh Tiwari
Duration:50 hours
Batch Type:Weekend and Weekdays
Languages:English
Class Type:Online
Course Fee:
Course Content
๐ 50 Hours Data Science with Generative AI & LLMs (Python)
๐น Course Objective
To build strong Data Science foundations and advance learners into Generative AI & Large Language Models (LLMs) with real-world projects using Python.
๐ Course Breakdown (50 Hours)
Module 1: Python for Data Science (6 Hours)
Python Basics: Syntax, Variables, Data Types
Control Statements & Functions
Data Structures: Lists, Tuples, Sets, Dictionaries
NumPy: Arrays, Indexing, Broadcasting
Pandas: DataFrames, Series, Data Operations
Reading/Writing CSV, Excel, JSON
๐ Hands-on Lab: Data cleaning using Pandas
Module 2: Data Preprocessing & Feature Engineering (6 Hours)
Handling Missing Values
Removing Duplicates
Outlier Detection & Treatment
Encoding Categorical Variables
Feature Scaling & Transformation
Feature Selection Techniques
๐ Hands-on Lab: Preprocessing a real-world dataset
Module 3: Exploratory Data Analysis (EDA) (6 Hours)
Importance of EDA
Descriptive Statistics
Univariate & Bivariate Analysis
Distribution Analysis
Correlation Analysis
Visualizing Relationships
Pandas Profiling & EDA Automation
๐ Hands-on Lab: EDA on business dataset
Module 4: Data Visualization (5 Hours)
Visualization Principles
Matplotlib: Basic & Advanced Charts
Seaborn: Statistical Visualizations
Plotly: Interactive Dashboards
Categorical vs Numerical Visualization
Multi-plot Layouts & Styling
๐ Hands-on Lab: Interactive data visualization project
Module 5: Statistics for Data Science (5 Hours)
Descriptive vs Inferential Statistics
Probability Concepts
Hypothesis Testing
Confidence Intervals
A/B Testing
Business Decision-Making using Statistics
๐ Hands-on Lab: A/B Testing case study
Module 6: Machine Learning with Python (8 Hours)
ML Workflow & Terminology
Supervised vs Unsupervised Learning
Regression Algorithms
Classification Algorithms
Clustering Techniques
Model Evaluation Metrics
Cross Validation & Hyperparameter Tuning
๐ Hands-on Lab: End-to-end ML pipeline
Module 7: Introduction to Generative AI (4 Hours)
What is Generative AI?
Evolution of AI โ ML โ DL โ GenAI
Transformer Architecture (Conceptual)
Use cases of GenAI in Industry
Overview of LLMs (GPT, LLaMA, Gemini)
๐ Hands-on Demo: Using OpenAI APIs with Python
Module 8: Large Language Models (LLMs) with Python (6 Hours)
Tokenization & Embeddings
Prompt Engineering Techniques
Text Generation, Summarization, Q&A
LangChain Basics
Building LLM Pipelines
Vector Databases (FAISS / Chroma โ concept + demo)
๐ Hands-on Project: Build a Question-Answering Bot
Module 9: Mini Projects & Capstone (4 Hours)
Data Science Project (EDA + ML)
GenAI Project (LLM-based Application)
Resume-ready GitHub Project
Best Practices & Deployment Overview
๐ Capstone Examples:
Customer Churn Prediction
AI Chatbot using LLM
Resume Analyzer with GenAI
๐งฐ Tools & Technologies Covered
Python, NumPy, Pandas
Matplotlib, Seaborn, Plotly
Scikit-learn
OpenAI API / LLM APIs
LangChain
Jupyter Notebook
๐ฏ Learning Outcomes
By the end of this 50-hour program, learners will:
Build complete Data Science pipelines
Apply Machine Learning models to real problems
Understand and implement Generative AI & LLMs
Create portfolio-ready projects
Be job-ready for Data Analyst / Data Scientist / GenAI roles
๐ Ideal For
Students & Fresh Graduates
Working Professionals
Data Analysts upgrading to AI
Anyone aiming for AI & GenAI careers
Skills
Ai and Data Analytics, Ai with Python, Advanced Python Programming, Feature Engineering, Data Visualization, Data Preprocessing, Prompt Engineering, Python Programming, Python for Data Science
Tutor

Ravi Rakesh Tiwari is an experienced Python and Data Science educator with over 14 years of teaching experience. He specializes in Python programming, data...
0.0 Average Ratings
0 Reviews
3 Years Experience
tulinj road



