Machine Learning

DurationDuration:1 hours

Batch TypeBatch Type:Weekend and Weekdays

LanguagesLanguages:English

Class TypeClass Type:Online

Class Type Course Fee:

₹500.00Per hour

Course Content

Machine Learning Course Syllabus


Module 1: Introduction to Machine Learning

  • What is Machine Learning (ML)

  • Applications of ML in real-world scenarios

  • Types of ML:

    • Supervised

    • Unsupervised

    • Reinforcement Learning

  • Overview of the ML workflow


Module 2: Python & ML Tools Setup

  • Python essentials for ML

  • Jupyter Notebook, Google Colab

  • Key Libraries:

    • NumPy

    • Pandas

    • Matplotlib

    • Seaborn

    • Scikit-Learn


Module 3: Data Preprocessing

  • Handling missing values

  • Encoding categorical variables:

    • Label Encoding

    • One-Hot Encoding

  • Dealing with imbalanced datasets

  • Data cleaning, normalization & standardization


Module 4: Exploratory Data Analysis (EDA) & Visualization

  • Data visualization using Matplotlib & Seaborn

  • Understanding distributions, correlations, and trends

  • Identifying anomalies and outliers


Module 5: Feature Engineering

  • Feature scaling:

    • Normalization vs Standardization

  • Handling outliers

  • Feature transformation & creation

  • Feature encoding for models


Module 6: Feature Selection & Dimensionality Reduction

  • Feature selection methods:

    • Filter methods

    • Wrapper methods

    • Embedded methods

  • Dimensionality reduction techniques:

    • Principal Component Analysis (PCA)

    • t-Distributed Stochastic Neighbor Embedding (t-SNE)

    • Linear Discriminant Analysis (LDA)


Module 7: Supervised Learning – Regression

  • Linear Regression:

    • Simple, Multiple, Polynomial

  • Regularized Regression:

    • Lasso (L1), Ridge (L2), ElasticNet

  • Model evaluation metrics:

    • Mean Squared Error (MSE)

    • Root Mean Squared Error (RMSE)

    • Mean Absolute Error (MAE)

    • R² Score


Module 8: Supervised Learning – Classification

  • Logistic Regression

  • Decision Trees

  • Random Forest

  • Support Vector Machines (SVM)

  • Ensemble Methods:

    • Bagging

    • Boosting (AdaBoost, XGBoost)

  • Evaluation metrics:

    • Accuracy

    • Precision

    • Recall

    • F1-Score

    • ROC-AUC


Module 9: Unsupervised Learning

  • Clustering:

    • K-Means

    • Hierarchical Clustering

    • DBSCAN

    • Evaluation Metrics: Silhouette Score, Davies-Bouldin Index

  • Association Rule Mining:

    • Apriori Algorithm

    • FP-Growth

    • Metrics: Support, Confidence, Lift

  • Practical applications


Module 10: Anomaly Detection

  • Isolation Forest

  • One-Class SVM

  • Autoencoders for anomaly detection


Module 11: Time Series Analysis & Forecasting

  • Introduction to time series data

  • Key concepts: Stationarity, trend, seasonality

  • Forecasting models:

    • ARIMA

    • SARIMA

    • Prophet (optional)


Module 12: Model Optimization & Hyperparameter Tuning

  • Cross-validation techniques

  • Hyperparameter tuning:

    • GridSearchCV

    • RandomizedSearchCV

    • Bayesian Optimization


Module 13: Deep Learning Basics

  • Introduction to Neural Networks

  • Activation functions & optimizers

  • Overview of:

    • Feedforward Neural Networks

    • Convolutional Neural Networks (CNN)

    • Recurrent Neural Networks (RNN)

  • Frameworks:

    • TensorFlow

    • Keras

    • PyTorch


Module 14: Model Deployment & MLOps

  • Saving and loading models

  • Building APIs using:

    • Flask

    • FastAPI

    • Django

  • Introduction to MLOps:

    • ML Pipelines

    • MLflow

    • CI/CD for ML Projects


Module 15: Capstone / Final Project

End-to-End ML Project covering:

  • Data collection

  • Data preprocessing

  • Model building & evaluation

  • Model deployment

Example Capstone Projects:

  • Credit Card Fraud Detection

  • Crop Yield Prediction

Skills

Advanced Machine Learning, Machine Learning

Tutor

0.0 Average Ratings

0 Reviews

4 Years Experience

KPHB Colony

Students Rating

0.0

Course Rating

Blogs

Explore All